
Du  et al.,
      

International Journal on Emerging Technologies   11(2): 370-377(2020)                                      370 

International Journal on Emerging Technologies 11(2): 370-377(2020) 
ISSN No. (Print): 0975-8364 

ISSN No. (Online): 2249-3255 

A Fast Computation of Betweenness Centrality in Large-Scale Unweighted 
Graphs 

P.H. Du
1
, N.S. Duong

2
, N.C. Nguyen

3 
and N.H. Nguyen

4
 

1
Ph.D. Department of Information Systems, VNU University of Engineering and Technology, 

Vietnam National University, Hanoi, Viet Nam. 
2
Ph.D. Student, Technical Department of Security, Vietnam Ministry of Public Security, Ha Noi, Viet Nam. 

3
Ph.D. Department of Information Technology, Vietnam Ministry of Public Security, Ha Noi, Viet Nam. 

4
Associate Professor, Department of Information Systems, 

VNU University of Engineering and Technology, Vietnam National University, Hanoi, Viet Nam. 

(Corresponding author: N.H Nguyen) 
(Received 18 December 2019, Revised 18 February 2020, Accepted 20 February 2020) 

(Published by Research Trend, Website: www.researchtrend.net) 

ABSTRACT:  Betweenness Centrality is one of the widely used metrics in graph analysis to identify 
influential nodes. This metric has been applied in various fields such as in social networks, social 
commerce, malware detection, transportation, detecting terrorist risk. However, computing this metric also 
takes much time in case of having a large number of vertices/edges, even using the Brandes’s faster 
algorithm. A variety of methods have been proposed to improve this algorithm, such as GPU usage, cluster 
usage, approximation, etc. However, taking advantage of the computational resources of conventional 
computing systems with parallel computing on multi-core, multi-CPU, and optimizing data structures to 
improve the cache performance has not been focused on previous researches. Thus, we present in this 
paper an efficient algorithm to enhance the performance of computing the Betweenness Centrality of all 
vertices in a large-scale unweighted graph. This proposed algorithm is based on the main ideas: (i) using the 
appropriate data structure to enhance the data localization and then less reference time of graph data, and 
(ii) reducing the Brandes’s faster algorithm execution time with parallel computing. To evaluate its 
performance, we conducted experiments of our method, called bigGraph, and the two other popular toolkits: 
TeexGraph and NetworKit, with six different real-world social networks. Experimental results figure out that 
bigGraph is faster than TeexGraph and NetworKit 1.11-1.35 and 1.61-2.44 times, respectively. 

Keywords: Betweenness Centrality, Breadth-First Search, Multi-threaded Parallel Computing, Social Network 
Analysis. 

Abbreviations: BC, betweenness centrality; CC, closeness centrality; BFS, breadth-first search; SSSP, single 
source shortest path; APSP, all pair shortest path. 

I.  INTRODUCTION 

The graph theory is now widely used in many different 
areas, from problems in network planning, Internet 
analysis, social networks, social commerce, 
bioinformatics, malware detection, transportation. One 
of the typical applications of graph theory is analyzing 
large-scale social networks. For this domain, the direct 
relationship between two members (if exists) is 
represented by an edge connected directly between two 
vertices, one for a member. Facebook, WhatsApp, 
Twitter, and YouTube are now popular social networks 
and they are considered the efficient ways to connect 
people in our networked society. The scale of these 
networks is very large: as the statistic provided by The 
Statistics Portalin July 2019, the number of active users 
of Facebook is 2.32 billion; YouTube is 1.9 billion and 
WhatsApp surpassed 1.6 billion [1]. The growth of these 
social networks has also encouraged the social 
commerce research in both shaping the purchases and 
information sharing intentions [2], consumer behavior 
analysis [3], social marketing strategy, finding micro-
influencers [4].  
To deal with the large-scale graphs such as those 
mentioned networks, many graph analysis methods 
have been proposed and shaped a popular field called 

"Social Network Analysis - SNA". It composes, in 
general, the process of investigating social structures 
through the use of networks and graph theory [5]. To 
analyze the graphs, the centrality is the most important 
and widely used metrics, aiming to find the most 
"important" or the most influential vertices to the others 
in the graph. In other words, we should find and identify 
which node has the most effect on the other [6], or 
which node representing the most important users [7]. 
When applying this concept to different fields, we can 
find the main nodes on the Internet or the vertices that 
spread the disease when modeling the plague spread 
problem. The concept of "importance" is defined in 
different ways when analyzing graphs. From that point, 
many centrality metrics are proposed to clarify the 
"important" properties such as the betweenness 
centrality, closeness centrality, PageRank centrality [8]. 
Among these metrics, by the first formal definition of 
Freeman [9], the Betweenness Centrality (BC) of a 
vertex is a metric that is determined based on shortest 
paths: for every pair of vertices in a connected graph, 
there exists at least one shortest path between the 
vertices such that either the number of edges that the 
path passes through (for unweighted graphs) or the sum 
of the weights of the edges (for weighted graphs) are 
minimized. The BC for each vertex is the number of 

e
t



Du  et al.,
      

International Journal on Emerging Technologies   11(2): 370-377(2020)                                      371 

these shortest paths that pass through the vertex. It is 
also considered as one of the most widely used metrics 
in graph analyses [8]. This is the main idea that 
encourages us to focus on this metric in our work. 
By its definition, determining the BC metric for every 
node in a graph/network has to figure out the all pairs 
shortest path problem. It means that we need to perform 
a complete breadth-first search (BFS) for an unweighted 
graph or a complete execution of Dijkstra’s algorithm for 
a weighted graph. In general, for the large-scale real-
world social networks, computing the BC for all 
members takes remarkably a complex duration time 
[10], even using the Brandes’s faster algorithm [17]. A 
variety of methods have been proposed to improve this 
algorithm, such as GPU usage, cluster usage, 
approximation, etc [39]. However, taking advantage of 
the computational resources of conventional computing 
systems with parallel computing on multi-core, multi-
CPU, and optimizing data structures to improve the 
cache performance has not been focused on previous 
researches. 
In this paper, we focus on proposing a method to 
enhance the performance of computing the 
Betweenness Centrality for all vertices of a large-scale 
unweighted graph. Our proposed method is based on 
two main ideas. First, we proposed an appropriate data 
structure to improve the data localization, thereby 
increasing the hit cache rate in the shared memory 
model. Secondly, we improve the faster Brandes’s 
algorithm by paralleling the BFS for all vertices with the 
threading programming model. The proposed method 
was implemented in a graph analyzing tool, namely 
bigGraph, and freely published on the GitHub. 
The rest of this paper is organized into the following 
sections: In Section II, centrality metrics and an 
algorithm for BC computation are given; the related 
work is also mentioned in this section. Our proposed 
method for improving the BC computation for all vertices 
is explained in Section III. Section IV gives experimental 
results to validate our approach with different social 
networks and other similar toolkits. Finally, we 
summarize the paper in Section V and show our future 
scope in Section VI. 

II. PRELIMINARIES AND RELATED WORK 

A. Notations 
In this article, we focus only on unweighted graph G(V, 
E), where �  is the set of all vertices and � =
 ���� , �
���� , �
 ∈ �} represents the set of all edges (�� 
and �
  are connected with a single unweighted link). 

The total number of edges to (incoming) and from 
(outgoing) a vertex �� is called the degree of �� and is 
represented as ���(��). 
Two nodes �, � ∈ � are connected if there exists a path 
between �and �. If all vertex pairs in � are connected, 
we say that �  is connected. Otherwise, it is 
disconnected, and each maximal connected subgraph 
of � is a connected component, or a component, of G.  
In our work, we use ���(�, �) to denote the length of the 
shortest path between two vertices �, � in a graph �. If� 
and�  are identical then ���(�, �)  =  0 . Moreover, if u 
and v are disconnected then ���(�, �)  =  ∞. 
In graph analysis, the centrality of a node allows 
identifying the most important one. Centrality concepts 
are also applied in other problems such as essential 

nodes on the Internet and super-spreaders of disease. 
There are four indicators of centrality defined as follows: 
–  Degree Centrality is defined as the number of links 
incident upon a node. It is measured by the following 
formula: 
�� = deg(�) : � ∈ �                                                     (1) 
– Closeness Centrality is the indicator computed by 
the average length of the shortest path between the 
node and all other nodes in the network. Thus, the more 
central a node is, the closer it is to all of the other 
nodes. Closeness Centrality is computed by the 
following formula: 

��(�) =  #
∑ %&'((,))*∈+

                                                      (2) 

where ���(�, �) is the shortest distance between node , 
and node �. 
In order to avoid the value ∞ when computing the 
shortest distance of a disconnected graph �, the CC of 
a node � is computed for the largest-componentΓ. of �. 
Moreover, if a node � cannot reach any other node in �, 
then CC(u) = 0. 
– Betweenness Centrality is defined as a centrality 
measure of a node within a network that quantifies the 
number of times a node acts as a bridge along the 
shortest path between two other nodes. It was 
introduced as a measure for quantifying the control of a 
human on the communication between other humans in 
a social network by Linton Freeman [9]. In his work, 
vertices that have a high probability to occur on a 
randomly chosen shortest path between two randomly 
chosen vertices will have high betweenness centrality 
value. Betweenness Centrality (BC) is computed by the 
following formula:  

/�(�) =   ∑ 012)
012& 3' 3) ∈4                                                 (3) 

where 5&'  is the total number of shortest paths from 
node 6 to node 7; 5&'� is the number of those paths that 
pass through �.  
– Eigenvector Centrality is an indicator to measure the 
influence of a respective node in a network. Relative 
scores are assigned to all influence nodes based on the 
concept that connections to high-scoring nodes 
contribute more to the score of the node in question 
than the equal connections to low-scoring nodes [11]. 
Examples of variants of Eigenvector Centrality are Katz 
Centrality and Google's Page Rank. 
The adjacency matrix is used to compute the 
Eigenvector Centrality. Let 8 =  (9(,)) be the adjacency 

matrix of �: 9(,) =  1 if node � is linked to node � and 

9(,)  =  0  otherwise. The Eigenvector Centrality ;  of 

node � can be defined as: 

;)  =  #
< ∑ ;'' ∈=()) =  #

< ∑ 9),'' ∈. ;'                               (4) 

where >(�) is a set of the neighbors of �  and  ?  is a 
constant. In matrix form we have:   ?; =  ;8. 

B. Related Work 
The Betweenness Centrality, which was proposed by 
Freeman in 1977, is one of the metrics that is widely 
used in general graph analysis to identify important 
vertices. This measure has been applied to 
graph/network analysis in many different areas such as 
transportation [12], biology - health [13], social network 
analysis for community detection [14], discovering the 
risk of terrorism [15], control power flow pattern 
throughout the whole power grid [39]. 
To calculate this indicator for all vertices �  in graph 
� =  (�, @), we need to solve the problem of finding the 



Du  et al.,
      

International Journal on Emerging Technologies   11(2): 370-377(2020)                                      372 

shortest path on all the vertex pairs in �  (All Pair 
Shortest Path - APSP problem). Obviously, when the 
number of vertices and edges of �  is large, the 
implementation of the APSP calculation process will 
have a considerable time if the usual calculation method 
using the Floyd-Warshall algorithm is used (the 
calculation complexity is A(|�|C)) or Johnson algorithm 
(with complexity A(|�|DEF�(|�|)  G |�||@|)). Up to now, 
the most effective algorithm to accurately calculate the 
BC with all vertices in G is proposed by Brandes in 
2001, which has the time complexity of A(|�|. |@|) on 
unweighted graphs and A(|�|. |@|  G |�|D . EF�(|@|))  on 
weighted graphs [16].  
Brandes designated by  I(�, �) the number of shortest 
( �, � )-paths, and by 5(�, �|�)  the number of shortest 
(�, �)-paths passing through some vertex �  other than 
�, �. His algorithm is based on the essential idea that the 
cubic number of pair-wise dependencies  I(�, �|�)  =
 0(&,'|))

0(&,')  can be aggregated without calculating all of them 

explicitly. He also denoted the one-sided 
dependencies I(�|�)  = ∑ I(�, �|�)'∈4  [17]. The pseudo 
code of the Brandes's algorithm with an unweighted 
graph is illustrated as in Algorithm 1. 

 

In this algorithm, the computation of BC is repeated with 
all vertices � ∈ � , each time calculating I(�|�) (one-

sided dependencies) for every � ∈ � in two phases. The 
first phase is a SSSP (Single Source Shortest Path) 
calculating to determine the distance and shortest path 
from s to the other vertices in �. The second phase is a 
back-traversing on the approved vertices in the first 
phase in order to calculate the dependencies of vertices 
according to the following equation [17], beginning with 
the furthest vertex from s: 
 

 I(�|�) =  J I(�, �)
I(�, K)

L: (),L)∈ M NO% %�&'(&,L)P%�&'(&,))Q#
. �1 G I(�, K)� 

Brandes's algorithm execution takes a lot of time if the 
number of vertices/edges of the graph is too large. For 
example, with a graph having 100 million vertices and 
100 million edges, the Brandes's execution time is 
measured absolutely complex: about |�|. |@|  =
 10R . 10R =  10#S or 10 quadrillion arithmetic operations. 
In order to improve the speed of computing the 
Betweenness Centrality, many solutions have been 
proposed to compute approximately this metric. For 
example, research works [18-21], proposed the idea of 
quickly computing the approximate Betweenness 
Centrality based on sampling techniques. In addition to 
the approximation approach, research works [8, 10, 16, 
22, 23] applied heuristics in building the topology 
manipulation, such as pre-computation for 1-degree 
vertices, graph partitioning, considering 2-degree 
vertices to re-use the results of the two subtrees of each 
one to reduce the calculation time of Brandes's 
accumulative phase. 
In addition to the above methods, the parallel computing 
approach is also applied to improve the performance of 
BC computation. Recent results on this approach can 
include parallelizing the calculation of BC in the 
NetworKit toolkit [24], or the TeexGraph toolkit [25] for 
analyzing large-scale social networks. These toolkits all 
use a share-memory based parallel model and use the 
OpenMP library to parallelize the process of computing 
this BC. In addition, to compute the BC for fast evolving 
graphs, Jamour et al. proposed the iCENTRAL 
incremental algorithm based on decomposing the graph 
into biconnected components [26]. 
For static graphs, there has been a lot of researches in 
the parallel computation of BC using GPU (Graphics 
Processing Unit) processors. In 2016, Bernaschi and 
colleagues built the MGBC (Multi-GPU Betweenness 
Centrality) solution combining the use of multiple GPUs 
and parallel models using MPI distributed memory to 
improve the speed of BC computing [27]. Exploiting 
GPU to parallelize this measure mostly uses the classic 
algorithm of Brandes [28, 29]. 
Several solutions have also been proposed for 
performing the BC computation on distributed high-
performance computing systems. For example, 
GraphLab [30] or Apache Giraph [31] are able to 
manipulate networks having trillions of edges [32]. 
These toolkits are primarily designed to analyze 
networks on a very large scale and must use complex 
computational infrastructures such as cluster systems or 
supercomputers [30, 40]. With such computational 
infrastructure requirements, these solutions are not 
really effective for the problem of computing the BC with 
social networks not so big as Facebook. 
In this paper, we only focus on improving the 
performance of computing precisely the BC by 
structuring graph data appropriately and emphasizing in 



Du  et al.,
      

International Journal on Emerging Technologies   11(2): 370-377(2020)                                      373 

parallel techniques for computing the Brandes's 
algorithm with the shared memory model (combining 
with GPU will be oriented research in the future). 
Because most social networks use the concept of 
weightless relations, we are only interested in 
unweighted graphs that can be directed or undirected. 

III. A FAST ALGORITHM OF BETWEENNESS 
CENTRALITY COMPUTATION 

Based on the above analysis, we proposed a method to 
improve the performance of BC computation on 
unweighted graphs. This method is constituted of the 
following ideas: 
– Use the appropriate data structure to improve the data 
localization, thereby increasing the hit cache rate in the 
shared memory model. That empowers us to decrease 
the reference time of the graph data in the main 
memory. 
– Parallel SSSP computations of Brandes's algorithm for 
all vertices with the threading programming model using 
the Intel CilkPlus [33] library. 

A. Appropriate Data Structure 
Similar to [18], data of large-scale graph � = (�, @) will 
be organized by the adjacent vertex lists: each vertex is 
assigned an identifier from 0 to |�|  T  1. For edge data, 
sorted vertex vectors will be used to represent the graph 
edges. From that point, the edge data will be 
represented in the vectors array @����U�V ∀� ∈ �. This 
is a data organization method which provides the ability 
to have the highest hit rate when referring to graph data 
[35]. 
The vertices traversed by BFS method will be traced in 
a vector, where each bit in the vector indicates the 
traversed or non-traversed state of the vertex 
corresponding to that bit position. 
We structure the queue X to store both the vertices � 
that will be traversed and the distance from the source 
vertex � to the target vertex �. This structure allows us 
to always get the distance value from � to � in the cache 
memory when considering vertex �, and the cache hit 
rate will be increased. 

B. Parallel Algorithm to Compute the Betweenness 
Centrality 
As Brandes's algorithm illustrated in Algorithm 1, 
computing the BC for all vertices is entirely based on the 
BFS method. To exploit the advantages of multi-core 
processors as well as multi-processor computing 
systems, we will compute in parallel the BC of all 
vertices. Our parallel approach is based on parallel 
computing BC on different vertices rather than doing 
parallel BFS from one vertex to all the remaining ones 
(SSSP). This approach allows SSSP traverse to be 
performed in each own thread, which helps to improve 
the hit cache rate by using the adjacent data in the 
cache. 
According to Leist and Gilman (2014) CilkPlus is the 
best parallel programming paradigm [36]. Moreover, we 
also conducted evaluation tests with Intel CilkPlus [33], 
OpenMP [42] and pThread [43] libraries, the results 
showed that CilkPlus's performance is better than the 
others. This is the reason we decide to use CilkPlus 
library to perform the BC computation in parallel.  
To implement Brandes's algorithm in parallel, we 
recognize that its Phase 1 (SSSP) can be dependently 
computed for each vertex � ∈ �. However, its Phase 2 

(accumulation), the value /�UKV is calculated gradually 
over the related vertices. Therefore, Phase 1 can 
entirely be performed in parallel with our proposed 
appropriate data structure. Notwithstanding, Phase 2 
requires the concurrency control technique to handle the 
data races when calculating the accumulator variable 
/�UKV  from all related vertices. With Intel CilkPlus 
runtime system, the data races from updates to an 
accumulator variable may be able to be performed in 
parallel by using a reducer. Technically, a reducer 
allows to create a private accumulator variable for each 
thread and to combine the thread-private accumulator 
variable results in the correct order as the threads finish. 
Because reducers do not need locks, they can be very 
efficient [33].  
Thence, the parallel computation of BC will be illustrated 
in Algorithm 2. 

 



Du  et al.,
      

International Journal on Emerging Technologies   11(2): 370-377(2020)                                      374 

The computational complexity of Algorithm 2 is clearly 
similar to Algorithm 1: A(|�| ∗ |@|)  in the case of 
1 T �ℎ[�9�  computation (that means the sequential 
computation). In the case of computing in � T
�ℎ[�9�� parallel, the computational complexity of 
Algorithm 2 is proportionally reduced � times and is only 

A(|4|∗|M|
' ). 

IV. EXPERIMENT AND EVALUATION 

The experiments were performed in a machine having 2 
x Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz (45MB 
Cache, 18-cores per CPU), 128GB for the main 
memory, CentOS Linux release 7.4.1708, gcc 7.2.0. 
This computing system was configured with a maximum 
of 36-threads in parallel without hyperthreading. The 
dataset we used in our experiment and the obtained 
results will be detailed in the next sections. 

A. Datasets 
To evaluate our method for computing the BC of all 
vertex on a graph, five datasets from the Stanford Large 
Network Dataset Collection (SNAP) [37] and one from 
Aminer Datasets for Social Network Analysis [38] are 
selected to evaluate the results.  
– gemsec-Facebook: These datasets contain eight 
networks built to represent blue verified Facebook page 
networks. These pages are modeled using vertices, 
while the edges show the links between them. Due to 
time constraints, we choose only two big datasets in 
gemsec-Facebook for our experiment: Politician and 
Artist. 
– ego-Facebook: This dataset is built from the 'friends 
lists' of Facebook, collected from survey participants 
using this Facebook app.  
– com-DBLP: is a dataset that represents the DBLP co-
authorship network. 
– com-Youtube: This dataset is collected from the 
ground-truth communities in Youtube social network. 
– Flickr: is a dataset representing a popular photo-
sharing network allowing users to upload and share 
photos. 
Among these datasets, Flickr is a disconnected graph, 
and the others are connected graphs. Descriptions of 
the datasets are shown in Table 1: 

Table 1: Detail of the graph datasets. 

Dataset Edges Nodes Diameter 

ego-Facebook (DS1) 88,234 4,039 8 

gemsec-Facebook 
Politician (DS2) 

41,729 5,908 14 

gemsec-Facebook  
Artist (DS3) 

819,306 50,515 11 

DBLP (DS4) 1,049,866 425,975 23 

Flickr (DS5) 2,987,624 1,157,828 24 

Youtube (DS6) 9,114,557 214,626 10 

B. Results and Evaluation 
Based on the previous work on computing the 
closeness centrality [34], we implemented our solution, 
called bigGraph, in C++ language using the CilkPlus 
parallel library and published both source codes and 
test results on the GitHub [41]. 
To evaluate our solution, two recent network analysis 
toolkits presented in Section II were chosen to compare 
the performance with bigGraph: TeexGraph and 
NetworKit. We implemented these toolkits and bigGraph 
in the same platform mentioned above. 

To analyze the speedup factor, we conducted the first 
evaluation of bigGraph solution with the number of 
parallel threads varied from 1 (corresponding to the 
sequential execution) to 36 (the maximum) in our 
computing system. For large-scale graph data sets such 
as YouTube, DBLP, and Flickr, the execution time to 
compute BC is generally very high (as illustrated in 
Table 3). Since then, the comparison between bigGraph 
and the other two graph analysis toolkits (TeexGraph 
and NetWorKit) will focus on using the first three 
datasets: ego-Facebook (DS1); gemsec-Facebook 
Politician (DS2); and gemsec-Facebook Artist (DS3). 
Our experimental results are aggregated based on the 
average execution time of 10 tests run for each solution 
and shown in Table 2. 

Table 2: Time (in seconds) and speedup of bigGraph 
when computing BC. 

Threads
DS1 DS2 DS3 

Time Speedup Time Speedup Time Speedup

1 3.03 1.00 8.20 1.00 1129.47 1.00 

2 2.52 1.20 7.44 1.10 832.76 1.36 

4 1.51 2.01 4.52 1.82 556.46 2.03 

8 0.92 3.29 2.61 3.15 330.64 3.42 

16 0.54 5.62 1.60 5.14 196.46 5.75 

32 0.28 10.79 0.89 9.19 118.92 9.50 

36 0.23 13.26 0.74 11.01 99.85 11.31 

 
Fig. 1 clearly shows the change of the bigGraph's 
speedup factor when the number of parallel threads 
changes: 

 

Fig. 1. Execution time to compute BC. 

As illustrated in Fig. 2, the more parallel threads we can 
perform, the shorter execution time for computing BC. 
So, we decided to choose the number of 36 parallel 
threads (the maximum number of threads on our 
computing system) when evaluating the performance 
between bigGraph and NetWorKit, TeexGraph. 

 

Fig. 2. Speed up Factor when Computing BC of 
bigGraph. 



Du  et al.,
      

International Journal on Emerging Technologies   11(2): 370-377(2020)                                      375 

Table 3 below illustrates the average time of 10 
executions for computing BC of all three solutions 
mentioned above: 

Table 3: Time (in seconds) for computing BC. 

Dataset bigGraph TeeGraph NetworKit 

ego-Facebook 0.23 0.31 0.56 

gemsec-Facebook 
Politician 

0.84 0.84 1.70 

gemsec-Facebook  
Artist 

99.85 110.58 234.12 

DBLP 2,345.62 2,694.78 4,823.47 

Flickr 3,506.34 4,447.93 7,694.61 

Youtube 56,071.60 68,744.80 90,522.30 

The experimental results in Table 3 demonstrate that 
our proposed algorithm for computing the BC has a 
shorter execution time than the two other solutions of 
TeexGraph and NetworKit. Detailed illustration of the 
execution time of all three toolkits is shown in Fig. 3 
below: 

 

Fig. 3. Execution time to compute BC for different 
toolkits 

Besides, we also compared and evaluated the values of 
BC obtained from all three solutions. The results 
showed that all three solutions returned the same BC 
values with all six data sets mentioned above. 
The obtained experimental results allow us to confirm 
our parallel solution to compute the BC of all vertices in 
bigGraph with better performance than the other graph 
analysis toolkits. Table 4 shows that the bigGraph's 
speedup factor for all six datasets is faster from 1.11 to 
1.35 and from 2.06 to 2.44 times compared to 
TeexGraph and NetworKit, respectively. 

Table 4: Speedup of BigGraph in Comparison with 
TeexGraph and NetworKit. 

Dataset 
TeeGraph/ 
bigGraph 

NetworKit / 
bigGraph 

ego-Facebook 1.35 2.44 

gemsec-Facebook Politician 1.13 2.28 

gemsec-Facebook  
Artist 

1.11 2.34 

DBLP 1.15 2.06 

Flickr 1.27 1.61 

Youtube 1.23 2.19 

 
Thus, for all six real networks, our solution bigGraph 
enhances the performance and computes the BC for all 
nodes in the shortest time. 

V. CONCLUSION 

In this paper, we have focused on improving the 
efficiency of the betweenness centrality computing for 

all vertices in large-scale graphs.  Based on the 
Brandes's faster algorithm to compute the BC (the best 
algorithm today to compute BC with the computational 
complexity A(|�| ∗ (|�|  G |@|)) ), we proposed an 
efficient bigGraph solution based on (i) organizing the 
appropriate graph data that reducing amount of time 
accessing the main memory, and (ii) paralleling 
Brandes's faster algorithm using the CilkPlus library to 
perform in parallel the SSSP for all vertices. The 

proposed algorithm has a complexity of A(|4|∗(|4|Q|M|)
' , 

where � is the number of threads that can be executed 
in parallel.  
Our experiments with six different real networks 
(provided by SNAP and Aminers) allow us to confirm 
that bigGraph is the most efficient in comparison with 
other modern graph analysis toolkits such as 
TeexGraph and NetworKit: bigGraph is faster than 
TeexGraph and NetworKit from 1.11 to 1.35 and from 
2.06 to 2.44 times, respectively. The speedup of 
bigGraph is also increased proportionally with the 
number of threads in parallel. 

VI. FUTURE SCOPE 

For future work, we aim to extend our method for 
performing more complex graph analysis such as 
consumer behavior analysis in social commerce; 
detecting non-signature malware; finding the most 
influential user on the social media; controlling and 
forecasting the news spreading across the social 
networks. 

ACKNOWLEDGEMENTS 

This research was funded by Ministry of Science and 
Technology of Vietnam, grant number KC.01.19/16-20. 

Conflict of Interest. The authors declare no conflict of 
interest. 

REFERENCES 

[1]. Statista (2019). Most famous social network sites 
worldwide as of april 2019, ranked by number of active 
users, https://www.statista.com/statistics/272014/global-
social-networks-ranked-by-number-of-users/. 
[2]. Mikalef, P., Giannakos, M., & Pateli, A. (2013). 
Shopping and word-of-mouth intentions on social 
media. Journal of Theoretical and Applied Electronic 
Commerce Research,  8(1), 17–34. 
[3]. Zhang , K. Z., & Benyoucef, M. (2016). Consumer 
behavior in social commerce:  A literature review. 
DecisionSupport Systems, 86, 95-108. 
[4]. Hung, H. J., Shuai, H. H., Yang, D. N., Huang, L. 
H., Lee, W. C., Pei, J., & Chen, M. S. (2016). When 
social influence meets item inference, in Proceedings 
of the 22

nd
ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, New York, NY, 
USA: ACM, 915-924.  
[5]. Otte, E., & Rousseau, R.  (2002). Social network 
analysis: a powerful strategy, also for the information 
sciences, Journal of Information Science, 28(6), 441-
453. 
[6]. Louni, A., & Subbalakshmi, K. P. (2018). Who 
spread that rumor: Finding the source of information in 
large online social networks with probabilistically 
varying internode relationship strengths, IEEE 
Transactions on Computational Social Systems,  5(2), 
335-343. 



Du  et al.,
      

International Journal on Emerging Technologies   11(2): 370-377(2020)                                      376 

[7]. Farooq, A., Joyia, G. J., Uzair, M., & Akram, U. 
(2018). Detection of influential nodes using social 
networks analysis based on network metrics, in2018 
International Conference on Computing, Mathematics 
and Engineering Technologies (iCoMET),  1-6. 
[8]. Puzis, R., Elovici, Y., Zilberman, P., Dolev, S., & 
Brandes, U. (2015). Topology manipulations for 
speeding betweenness centrality computation, Journal 
of Complex Networks, 3(1), 84-112. 
[9]. Freeman, L. C.  (1977). A set of measures of 
centrality based on betweenness, Sociometry,  40(1), 
35-41. 
[10]. Sariyũce, A. E., Kaya, K., Saule, E., & Ọatalyũrek, 
U. V. (2017). Graph manipulations for fast centrality 
computation, ACM Transactions on Knowledge 
Discovery from Data (TKDD), 11(3), 26:1–26:25. 
[11]. Kim, J., & Lee, J. G. (2015). Community detection 
in multi-layer graphs: A survey, ACM SIGMOD Record, 
44(3), 37-48. 
[12]. Yang, J., & Chen, Y. (2011). Fast computing 
betweenness centrality with virtual nodes on large 
sparse networks, PLOS ONE, 6(7), 1-5. 
[13]. Bullmore, E., & Sporns, O.  (2009). Complex brain 
networks: graph theoretical analysis of structural and 
functional systems,Nature Reviews Neuroscience, 10, 
186-198. 
[14]. Chikhaoui, B., Chiazzaro, M., Wang, S., & Sotir, 
M. (2017). Detecting communities of authority and 
analyzing their influence in dynamic social networks, 
ACM Transactions on Intelligent Systems and 
Technology, 8(6), 82:1–82:28. 
[15]. Kaya, M., Kawash, J., Khoury, S., & Day, M. Y. 
(2018). Social Network Based Big Data Analysis and 
Applications, 1

st
edition, Lecture Notes in Social 

Networks, Springer International Publishing. [16]. Vella, 
F., Bernaschi, M., & Carbone, G. (2018). Dynamic 
merging of frontiers for accelerating the evaluation of 
betweenness centrality,Journal of Experimental 
Algorithmics, 23, 1.4:1–1.4:19. 
[17]. Brandes, U. (2001). A faster algorithm for 
betweenness centrality. The Journal of Mathematical 
Sociology, 25(2), 163-177. 
[18]. Eppstein, D., & Wang, J. (2004). Fast 
approximation of centrality. Journal of Graph 
Algorithms and Applications, 8(1), 39-45. 
[19]. Chehreghani, M. H. (2014). An efficient algorithm 
for approximate betweenness centrality computation, 
The Computer Journal, 57(9), 1371-1382. 
[20]. Riondato, M., & Kornaropoulos, E. M. (2016). Fast 
approximation of betweenness centrality through 
sampling, Data Mining and Knowledge Discovery, 30, 
438-475. 
[21]. Mahmoody, A., Tsourakakis, C. E., & Upfal, E. 
(2016). Scalable betweenness centrality maximization 
via sampling, in Proceedings of the 22

nd 
ACM SIGKDD 

International Conference on Knowledge Discovery and 
Data Mining, New York, NY, USA: ACM, 1765-1773.  
[22]. Baglioni, M., Geraci, F., Pellegrini, M., & Lastres, 
E.  (2012). Fast exact computation of betweenness 
centrality in social networks,” in 2012 IEEE/ACM 
International Conference on Advances in Social 
Networks Analysis and Mining (ASONAM), 450-456. 
[23]. Bentert, M., Dittmann, A., Kellerhals, L., 
Nichterlein, A., & Niedermeier, R. (2018). An adaptive 
version of brandes’ algorithm for betweenness 
centrality, Computing Research Repository-CoRR,  

abs/1802.06701. 
[24]. Staudt, C. L., SAZOnOvS, A. & Meyerhenke, H. 
(2016). Networkit: A tool suite for large-scale complex 
network analysis. Network Science, 4(4), 508-530. 
[25]. Takes, F. W., & Heemskerk, E. M. (2016). 
Centrality in the global network of corporate 
control. Social Network Analysis and Mining, 6(1), 1-18. 
[26]. Jamour, F., Skiadopoulos, S., & Kalnis, P. (2018). 
Parallel algorithm for incremental betweenness 
centrality on large graphs. IEEE Transactions on 
Parallel and Distributed Systems, 29(3), 659-672. 
[27]. Bernaschi, M., Carbone, G., & Vella, F. (2016). 
Scalable betweenness centrality on multi-gpu systems, 
in Proceedings of the ACM International Conference on 
Computing Frontiers, USA: ACM, 29-36. 
[28]. Fan, R., Xu, K., & Zhao, J. (2017). A GPU-based 
solution for fast calculation of the betweenness 
centrality in large weighted networks. Peer J Computer 
Science, 3, e140. 
[29]. McLaughlin. A., & Bader, D. A. (2018). 
Accelerating GPU betweenness centrality. 
Communications of the ACM, 61(8), 85-92. 
[30]. Wei, J., Chen, K., Zhou, Y., Zhou, Q., & He, J. 
(2016). Benchmarking of distributed computing engines 
spark and GraphLab for big data analytics. In 2016 
IEEE Second International Conference on Big Data 
Computing Service and Applications (BigDataService), 
10-13. 
[31]. Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., 
& Muthukrishnan, S. (2015). One trillion edges: Graph 
processing at facebook-scale. Proceedings of the 
VLDB Endowment, 8(12), 1804-1815. 
[32]. Avery Ching, Nitay Joffe, Maja Kabiljo, Greg 
Malewicz, Ravi Murthy, and Alessandro Presta, (2013). 
Scaling apache giraph to a trillion edges,  

https://www.facebook.com/notes/facebook-
engineering/scaling-apache-giraph-to-a-trillion-
edges/10151617006153920, (accessed October, 15 
2019) 

[33]. Intel, (2020). Cilk plus programming, 
https://www.cilkplus.org/cilk-documentation-full, 
(accessed January, 20 2020). 
[34]. Du, P. H., Nguyen, H. C., Nguyen, K. K., & 
Nguyen, N. H. (2018). An efficient parallel algorithm for 
computing the closeness centrality in social networks. 
In the Ninth International Symposium on Information 
and Communication Technology, ACM, New York, NY, 
USA, 1-6. 
[35]. Du, P. H., Pham, H. D., & Nguyen, N. H. (2018). 
An efficient parallel method for optimizing concurrent 
operations on social networks,” Transactions on 
Computational Collective Intelligence, LNCS (Scimago 
Q2), 10840 (29), 182-199. 
[36]. Leist, A., & Gilman, A. (2014). A comparative 
analysis of parallel programming models for C++, in 
The Ninth International Multi-Conference on Computing 
in the Global Information Technology, ICCGI 2014, 
121-127. 
[37]. Leskovec, J., & Krevl, A. (2019). SNAP Datasets: 
Stanford large network dataset collection, 
http://snap.stanford.edu/data, (accessed November, 
10, 2019). 
[38]. Zhang, Y., Tang, J., Yang, Z., Pei, J., & Yu, P. S. 
(2015). Cosnet: Connecting heterogeneous social 
networks with local and global consistency. In 



Du  et al.,
      

International Journal on Emerging Technologies   11(2): 370-377(2020)                                      377 

Proceedings of the 21th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 
ser. KDD ’15. New York, NY, USA: ACM, 1485-1494. 
[39]. Nasiruzzaman, A. B. M., & Pota, H. R. (2013). 
Complex Network Framework Based Comparative 
Study of Power Grid Centrality Measures, International 
Journal of Electrical and Computer Engineering 
(IJECE), 3(4), 543-552. 
[40]. Daniel, C., Furno, A., & Zimeo, E. (2019). Cluster-
based Computation of Exact Betweenness Centrality in 
Large Undirected Graphs, 2019 IEEE International 

Conference on Big Data (Big Data), Los Angeles, CA, 
USA, 603-608. 
[41]. Du, P. H.  Source code of bigGraph, 
https://github.com/hanhdp/parallel_betweenness_centr
ality/ 
[42]. OpenMP, http://openmp.org/wp/, (accessed 
September, 10 2019). 
[43]. Pthread Programming, 
https://computing.llnl.gov/tutorials/pthreads/, (accessed 
September, 10 2019). 

   
 

How to cite this article: Du, P. H., Duong, N. S., Nguyen, N. C.
 
and Nguyen, N. H. (2020). A Fast Computation of 

Betweenness Centrality in Large-Scale Unweighted Graphs. International Journal on Emerging Technologies, 11(2): 
370–377. 
 


